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Abstract:

Background:

Aluminium  salts  have  been  used  for  decades  in  vaccines  as  adjuvants  to  facilitate  the  adaptive  immune  response  against  co-
administered  antigens.  Two  types  of  aluminium  adjuvant  are  mostly  used,  aluminium  oxyhydroxide  and  aluminium
hydroxyphosphate.  Both  types  of  aluminium  adjuvant  consist  of  nanoparticles  that  form  loose,  micrometre  sized  aggregates  at
circumneutral pH.

Aluminium adjuvants constitute a well-documented example of administration of nanomaterials  to humans with infrequent side
effects and a safety record generally regarded as excellent. However, despite its prolonged use in human and veterinary medicine, the
mechanisms behind the enhanced response and the immune stimulatory effect are still by and large unknown.

Methods:

The present  paper  reviews existing ideas regarding the immunostimulatory effects  of  aluminium adjuvants,  with a  focus on the
induction of an inflammatory response by cellular stress. Reviewed information was obtained from peer-reviewed scientific papers
published in 1988 to date with one exception, a paper published 1931.

Results:

Cellular  stress  causes  extra  cellular  signalling  of  Danger  Associated  Molecular  Patterns  (DAMPs)  and  upon  phagocytosis  of
aluminium adjuvants the cells need to manage the ingested particles.

Conclusion:

A persistent  intracellular  accumulation  of  aluminium adjuvants  will  be  a  solid  depository  of  sparingly  soluble  aluminium salts
maintaining a constant concentration of Al3+ ions in the cytoplasm and this will affect multiple biochemical processes. The cell will
be under constant stress and DAMP signalling will occur and we would like to suggest the maintenance of a constant concentration
Al3+ ions in the cytoplasm as a general underlying feature of the immune stimulation properties of aluminium adjuvants.

Keywords: Aluminium adjuvants, Cellular stress, DAMP, Vaccine, Immunostimulatory effects, Al3+ ions.

1. INTRODUCTION

Vaccines, one of the greatest achievements of medicine, have a major impact on public health worldwide, saving
millions of people from disease and premature death. In attenuated and inactivated vaccines, such as the tuberculosis
and the Salk polio vaccine, the vaccine contains not only the pertinent antigens but also endogenous immune stimulants
acting as  adjuvants.  However,  in  vaccines  containing isolated and purified  antigen such as  tetanus,  diphtheria,  and
pertussis vaccines, the formulations require addition of exogenous adjuvants and to that end, aluminium salts have been
* Address correspondence to this author at the Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06
Malmö, Sweden, Tel: +46406657925; E-mail hakan.eriksson@mah.se

http://benthamopen.com
http://crossmark.crossref.org/dialog/?doi=10.2174/1874070701812010140&domain=pdf
http://www.benthamopen.com/TOBIOTJ/
http://dx.doi.org/10.2174/1874070701812010140
mailto:hakan.eriksson@mah.se


Aluminium Adjuvants – A Nanomaterial The Open Biotechnology Journal, 2018, Volume 12   141

used for decades to facilitate an adaptive immune response against co-administered antigens.

The  current  and  main  types  of  aluminium  salts  used  as  adjuvants  in  vaccine  formulations  are  aluminium
oxyhydroxide and aluminium hydroxyphosphate. Both types of aluminium adjuvants consist of nanoparticles that form
loose,  micrometre  sized  aggregates  at  circumneutral  pH;  the  physical  and  chemical  properties  are  however  quite
different.

Aluminium oxyhydroxide consists of needle-like crystallites,  4.5 nm x 2.2 nm x 10 nm in size [1],  which form
micrometre sized aggregates under physiological conditions. The aggregated aluminium oxyhydroxide particles have a
large surface area with a positive surface charge at neutral pH.

Aluminium hydroxyphosphate is amorphous, forming plate-like nanoparticles with a diameter of 50 nm [2], which
aggregate  and  form  loosely  unified  micrometre  sized  particles  under  physiological  conditions.  The  aggregated
aluminium hydroxyphosphate particles have a large surface area at neutral pH, however, the surface charge is negative
and thereby opposite in charge compared to aluminium oxyhydroxide particles.

Adsorption of protein antigens onto aluminium adjuvants are mediated through hydrophobic and van der Waals
forces, electrostatic interactions, and by ligand exchange [3]. An initial electrostatic interaction will lead to adsorption
of the antigen, which upon rearrangements on the adjuvant surface results in an antigen adsorbed onto the adjuvant
particles through multi-point attachments, mediated by a mixture of electrostatic as well as hydrophobic and van der
Waals  interactions.  Since,  the  commonly  used  aluminium  adjuvants  have  opposite  surface  charges,  aluminium
oxyhydroxide is generally used as adjuvant in combination with antigens having an isoelectric point less than 7 whereas
aluminium hydroxyphosphate is used with antigens having an isoelectric point greater than 7.

For many years, it was believed that the mechanism of action of aluminium adjuvants was due to adsorption of the
antigen to the adjuvant and thereby facilitating antigen presentation and at the same time forming an antigen depot at
the injection site, prolonging the exposure of antigen to the immune system. The depot hypothesis was proposed as
early as 1931 by Glenny, Buttle, and Stevens [4], however, the depot effect of aluminium adjuvants is today regarded as
not being likely since:

Within hours after administration most of the antigen diffuses away from the injection site [5].
The  half-life  of  antigen  in  situ  is  not  increased  due  to  administration  of  antigen  adsorbed  on  aluminium
adjuvants [3].
The magnitude of the immune response is not dependent on the adjuvant remaining at the injection site for more
than a few hours [6].
Fibrin-dependent  nodules  induced  by  aluminium  adjuvants  at  the  injection  site  is  not  a  requirement  of  an
immune response [7].

Instead, many reports have been made regarding infiltrating cells at the injection site showing both the accumulation
of  granulocytes,  monocytes,  macrophages  and  dendritic  cells  [8  -  10]  and  increased  amounts  of  inflammatory
chemokines and cytokines at the injection site [9, 11, 12]. Today the predominant hypothesis is that the aluminium
adjuvants induce inflammation at the injection site and several reviews have been published regarding the induction of
an inflammatory reaction as the mechanism behind the immune stimulatory properties of aluminium adjuvants [13 -
21].  Induction  of  an  inflammatory  response  is  consistent  with  Polly  Matzinger’s  proposal  in  1994,  that  immune
activation not only needs to be initiated by microbial infections but also by the recognition of molecules associated with
danger [22]. Danger molecules such as Pathogen Associated Molecular Patterns (PAMPs), driving inflammation and
initiating an adaptive immune response were soon identified [23, 24], and today the danger signals also include alarm
signals derived from endogenous molecules expressed at elevated levels upon danger, damage, stress, injury, or necrosis
[25, 26].

The involvement of DAMP and alarm molecules in the initiation of inflammation and thereby the induction of an
adaptive immune response has to some extent focused the research and lead to the development of adjuvants derived
from PAMP structures, inducing an inflammatory response at the injection site [27, 28]. An innate immune response is
induced after recognition of PAMP molecules by Toll-Like Receptors (TLR) and agonists against  TLRs have been
utilized  as  adjuvants  in  vaccine  formulations.  Derivatives  of  LPS  such  as  Monophosphoryl  Lipid  A  (MPLA)  and
oligonucleotides as CpG with specificities against TLR4 and TLR9 respectively, have been used in both experimental
and approved vaccine formulations.



142   The Open Biotechnology Journal, 2018, Volume 12 Danielsson et al.

The initiation of an inflammatory and a subsequent adaptive immune response caused by aluminium adjuvants has
been  suggested  to  be  mediated  by;  the  activation  of  caspase  -1  and  the  NLRP3  inflammasome  [29];  formation  of
Reactive Oxygen Species, ROS, either in the phagosomes [30] or by the mitochondrial electron transport chain [31 - 33]
and their subsequent release into the cytosol; rupture of phagolysosomes by aluminium adjuvants facilitating release of
proteases  such  as  cathepsin  B  into  the  cytoplasm  [34];  formation  of  lipid  rafts  in  the  cell  membranes  of  antigen
presenting cells, APCs [35]. However, none of these suggested mechanisms have been verified as a general mechanism
initiating the immune stimulatory features of aluminium adjuvants since no reduction of the immune response has been
observed in vivo after cellular depletions [36] or in mice lacking NALP3 inflammasomes [11, 37] and cathepsin B [38].

At the injection site, aluminium adjuvants have been shown to induce necrosis and cell injury [39 - 41]. Dead or
dying cells at the injection site will release DAMP structures, sometimes referred to as alarmins [42], corroborating the
induction  of  inflammation  as  a  central  cause  of  the  adjuvant  properties  of  aluminium  adjuvants  and  indeed,  the
involvement of DAMP and alarmins such as DNA [39], ATP [43] and HSP70 [44] in the immune response induced by
aluminium adjuvants  has  been  reported.  Accordingly,  cell  injury  and necrosis  caused  by  aluminium adjuvants  will
induce a sterile inflammation [45], however, DAMP or alarmin molecules can also be released upon cellular stress [46,
47], in the absence of cell death and necrosis.

Regarding  the  depot  effect  of  aluminium  adjuvants,  clearance  of  the  adjuvant  is  mediated  by  a  complete
solubilisation into Al3+ ions. Ions are quickly eliminated from the body and using a radioactive isotope of aluminium
and a soluble aluminium salt, aluminium citrate, 83% of intravenously injected aluminium was eliminated after 13 days
[48]. However, in a vaccine, aluminium adjuvants are injected as aggregates of aluminium salts with a solubility of less
than one μg Al3+/ml [49] and in animal experiments injection of aluminium adjuvants have resulted in the clearance of
no more than 6% of the aluminium 28 days after administration of aluminium oxyhydroxide, although a somewhat
higher  elimination  was  obtained  using  aluminium  hydroxyphosphate  showing  28%  elimination  at  day  28  [50].
Information  regarding  the  bio-distribution  of  aluminium  adjuvants  after  injection  and  their  elimination  is  limited,
however,  upon  endocytosis  and  encapsulation  in  granulomas  at  the  injection  site,  an  elimination  rate  completely
different from the rate obtained using soluble aluminium citrate as tracer can be expected.

Cells of myeloid origin, i.e. neutrophils, macrophages, and dendritic cells, are efficient phagocytic cells and a quick
uptake of aluminium adjuvants by myeloid cells occurs at the injection site [34, 35, 51, 52]. Several reports have shown
long time persistent intracellular aluminium aggregates in macrophages after administration of aluminium adjuvants
[53, 54] and in lymphoid organs, cells of myeloid origin have been shown to harbour aluminium aggregates [55, 56].
The cellular machinery will try to handle intracellular aluminium adjuvants and cellular stress can be anticipated in cells
holding  the  challenging  aluminium  aggregates,  and  as  previously  mentioned,  cellular  stress  induces  expression  of
DAMP or alarmin molecules. DAMP molecules are not only released upon stress induced cell death [26, 45, 57 - 59],
but  also  from living,  although stressed cells  [46,  60  -  62].  In  this  context,  myeloid  cells  are  well  known to  induce
inflammation and to act as Antigen-Presenting Cells (APCs). Release of DAMP and alarmins from these cells fits well
with the danger model by Matzinger in which injection of aluminium adjuvants results in a short-term inflammation
inducing the adaptive immune system and could concomitantly trigger a long-term inflammation resulting in some of
the autoimmune related pathological side effects (ASIA) reported to be caused by aluminium adjuvants [63, 64].

The mechanism behind the immune stimulating properties of aluminium adjuvants have been discussed and debated
during  decades  and  this  review  will  focus  on  possible  biochemical  mechanisms  inducing  an  initial  cellular  stress
response due to exposure to aluminium adjuvants.

2. CELLULAR IMPACTS DUE TO EXPOSURE AND INTERNALIZATION OF ALUMINIUM ADJUVANTS

Aluminium adjuvants in vaccines consist of aggregated nanomaterial and the impact of nanoparticles on various
cellular  mechanisms  has  been  reported  in  several  reviews  [65  -  68]  while  Al3+  ions  have  no  essential  role  in  any
biological  mechanism  as  far  as  is  known.  Aluminium  salts  and  ions  have  only  shown  toxic  effects  at  very  high
concentrations  and are  generally  considered as  posing low risk  of  inducing adverse  effects.  However,  studies  have
suggested that long-term exposure of aluminium has adverse neurological effects [69, 70] and ASIA has been reported
in relation to aluminium adjuvants [63, 64].

Inorganic  solid  state  materials  have  been  shown  to  affect  the  immune  activation  due  to  their  physicochemical
properties [71], and upon internalization into a cell, aluminium adjuvants may interfere with numerous and diverging
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biochemical and biological mechanisms. Fig. (1) outlines the various aspects that will be discussed in this review and in
which aluminium adjuvants may initiate an inflammatory process and thereby an adaptive immune response.

Fig. (1). Schematic picture showing internalization of Al adjuvants into a cell through an early phagosome containing Al-adjuvant
aggregate(s) and due to encapsulation of the adjuvant also a saturated solution of Al3+ ions. Upon entrance into the cell, Al-particles
and dissolved Al3+ ions can be expected to influence; 1) the endosomal pathway 2) mitochondrial function and activity 3) cellular
stress functions 4) protein synthesis and folding 5) nuclear structure and function.

2.1. The Endosomal Pathway, Early Endosome (Phagosome) to Lysosome (Phagolysosome)

Upon  injection  aluminium  adjuvants  consist  of  micrometre  sized  aggregates,  which  are  quickly  recognized  by
phagocytosing cells and internalized [53, 72, 73]. Phagocytosing cells are mainly cells of the myeloid line which are
potential professional APCs and phagocytosis of aluminium adjuvant may promote the survival of the cells [74].

Phagocytosis of aluminium adjuvants will, at the molecular level, give the cell a very high load of both antigen
adsorbed  on  the  adjuvant  aggregates  and  of  aluminium  salts.  The  aluminium  adjuvant  consists  of  aggregated
nanoparticles and once inside the phagosome an equilibrium will be established between various levels of aggregated
nanoparticles and of soluble Al3+ ions. However, upon phagosome maturation into a phagolysosome, the milieu inside
the vesicle entrapping the adjuvant aggregate will be altered. Maturation into a phagolysosome will change the protein
and peptide content inside the vesicle and due to oxidative burst, change the redox potential in the vesicle. The pH will
also  drop,  reflecting  an  increase  of  the  H+  concentration  by  several  orders  of  magnitude.  Taken  together  this  will
probably  affect  the  aggregation  level  of  nanoparticles  forming  the  aluminium  adjuvant  and  certainly  the  Al3+

concentration since a decrease in pH increases the solubility of the aluminium salts used as adjuvants. Both aluminium
adjuvants and Al3+ ions have been reported to interact and destabilize lipid membranes [35, 51, 75, 76], and rupture of
phagosomes and release of the content into the cytoplasm has been suggested as possible mechanism of aluminium
adjuvants  [34].  However,  in  this  context  it  was  only  the  release  of  the  lysosomal  protease  cathepsin  B  that  was
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discussed, not the release of nanoparticles of aluminium adjuvants or Al3+ ions. Release of aluminium adjuvants into the
cytoplasm constitutes a source of nanoparticles at various degree of aggregation and thus a solid depository of sparingly
soluble  aluminium  salts  maintaining  a  constant  concentration  of  Al3+  ions  in  the  cytoplasm.  Several  reports  have
verified the presence of small amounts aluminium particles persistent in the cytoplasm [51 - 54, 77] and Mitchell et al.
[68] have shown a strong upregulation of stress responses as a proactive defence against low loads of intra cellular
nanoparticles. Several stress induced proteins have been identified as DAMP molecules and it should be considered that
a cell with a low and persistent load of aluminium adjuvants will be a cell with a continuous increased stress response
and thereby a potential inducer of a sterile inflammation.

Micrometre sized aggregates of aluminium adjuvants will not be degraded inside a phagolysosome and in a situation
with or without disruption of the lysosomal membrane, initiation of an autophagosomal process will be anticipated as an
attempt to handle the particles [78 -  80].  The autophagosomal pathway induces a new compartmentalization of the
particles,  including  re-acidification  and  relocation  of  the  aluminium  adjuvant  in  autophagosomes.  Without
solubilisation, this process will be repeated and each cycle will drain the cell of energy. Both the phagosomal and the
autophagosomal  pathways are  energy consuming primarily  owing to  the acidification of  the vesicles  and increased
mitochondrial activity after phagocytosis of aluminium adjuvants has been reported [81].

Solubilisation of aluminium adjuvants occurs at the decreased pH inside the phagosomal/autophagosomal vesicles,
however, upon release into the cytoplasm, the solubility will be reduced as the circumneutral pH is re-established. In
any event, a constant amount of Al3+ ions will be present in the cytoplasm, controlled by the release of ions from solid
aluminium salts. As other metal ions, aluminium ions interact with all kinds of biomolecules and can be expected to
interfere with numerous biochemical events and mechanisms in the cell.

2.2. Mitochondrial Function and Activity

The energy production of a cell takes place in the mitochondria, and to maintain the function of the mitochondria,
the  inner  mitochondrial  membrane  potential  and  the  permeability  status  of  the  membranes  must  be  sustained.  The
formation  of  ATP  is  driven  by  a  chemiosmotic  gradient  established  by  an  electron  transport  chain  in  the  inner
mitochondrial membrane and the major generation of ROS occurs at the electron transport chain as a by-product of
respiration [82, 83]. At high cellular energy demand, the generation of mitochondrial ROS will increase and several
reports have shown that nanoparticles induce and increase mitochondrial ROS generation [84 - 86]. This fits well with
the assumption that non- or slowly degradable particles like aluminium adjuvants increase the energy consumption of
the cells and reports have shown the accumulation of Al2O3 nanoparticles in autophagosomes [87].

Nanoparticles  of  aluminium  adjuvants  are  more  potent  adjuvants  than  their  corresponding  microparticles  and
treatment  with  nanoparticles  of  aluminium  adjuvants  establishes  a  higher  intracellular  aluminium  content  [84].
Aluminium  adjuvants  and  Al3+  ions  impair  the  stability  of  lipid  membranes  [35,  51,  75,  76]  and  both  nano-  and
microparticles  of  aluminium adjuvants  induce  lysosomal  rupture  and  trigger  increased  levels  of  intracellular  ROS.
However, both particle sizes have been shown to be equally efficient in inducing lysosomal rupture and intracellular
ROS content [84]. Solubilisation of the adjuvants into aluminium ions is a limiting feature and although treatment with
nanoparticles results in a higher level of intra cellular aluminium, the cytoplasmic concentration of aluminium ions can
be expected to be the same regardless whether the intracellular delivery is mediated by nano- or microparticles. Instead
the time span, during which a saturated level of intracellular Al3+ ions remains, will be longer using nanoparticles. The
major impact on mitochondria can then be expected to be mediated by Al ions, however, in mammalian systems the
effect of intra cellular Al ions is challenging to investigate since they hardly penetrate the cell membrane (unless they
are delivered through endocytosis as an aggregated aluminium salt). Instead conclusion can be drawn from experiments
using plant materials in which intracellular concentrations of aluminium ions can be maintained. Several biochemical
processes can be considered as the same or very similar in plant and mammalian cells and in plants, aluminium ions
have been shown to cause ROS bursts and deterioration of the mitochondrial inner membrane potential [88, 89]. Al ions
also  increased  the  permeability  of  the  mitochondrial  outer  membrane,  triggered  the  release  of  cytochrome  c  from
mitochondria to the cytoplasm, and caused activation of caspase 3-like activity and fragmentation of DNA. Several
other reports have shown similar results in plant material with a collapse of the inner mitochondrial membrane potential
and the release of cytochrome c from mitochondria to cytoplasm [90].

The  function  of  the  mitochondria  is  affected  by  Al3+  in  plants  and  the  same  can  be  expected  to  be  valid  in
mammalian  cells  and  dysfunctional  mitochondria  have  been  detected  upon  chronic  exposure  to  aluminium ions  in
mammalians  [91].  Damaged  and  non-functional  mitochondria  are  removed  through  autophagy,  a  process  called
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mitophagy [92], and oxidized mitochondrial DNA, released into the cytoplasm due to damaged mitochondria evading
mitophagy,  activates  the  inflammasome and the  cell  becomes a  potential  inflammatory  cell  [31,  33].  Mitochondria
function and their implication in the induction and continuation of inflammation has received increased attention [93]
and the mitochondria are also pronounced sources of potential DAMP molecules and structures such as ATP, N-formyl
peptides, and mtDNA [58]. Aluminium adjuvants escaping the endosomal pathway into the cytoplasm, and especially
the establishment of a long lasting saturated concentration of aluminium ions in the cytoplasm, will have consequences
on the mitochondrial performance and may have a pronounced influence on the manifestation and continuation of an
inflammatory response.

2.3. Cellular Stress Functions

Cellular stress responses are physiological responses to an event, involving unfamiliar stimuli that affect the cells in
different ways and initiate production and release of various proteins by the cell to contain or overcome the provocation.
Polly Matzinger proposed the Danger model 1994 in which she suggests that the immune system is more concerned
with damage than with foreignness, and that the immune system is called into action by alarm signals from injured
tissues. These alarm signals can be constitutive or inducible, intracellular or secreted, or even a part of the extracellular
matrix.  Healthy  tissues  induce  tolerance,  but  when damaged,  they  stimulate  inflammation,  and  initiate  an  adaptive
immune response [94]. Examples of proteins associated with a stress response in this context are Heat Shock Proteins
(HSP)  of  different  molecular  size,  S100s,  calreticulin,  High-Mobility  Group  Box  1  Protein  (HMGB1),  Glucose-
Regulated Proteins (GRP), and mitochondrial components as previously described [60].

Today  the  use  of  adjuvants  has  become  vital  as  additives  in  vaccine  formulations  and  an  awareness  of  their
interactions with PAMP and DAMP biological mechanisms has become apparent [95].  Particles can cause a sterile
inflammation, and cells that are not inflammatory become pro-inflammatory when they are dead because of their release
of intracellular molecules acting as DAMPs.

Aluminum adjuvants  cause  cell  injury  resulting  in  the  release  of  cellular  contents  such  as  uric  acid,  ATP,  and
cellular DNA. The thus released cellular contents provide molecular danger signals that cause sterile inflammation and
activate dendritic cells by binding to pattern recognition receptors [39, 43, 96]. Stress induced by aluminium adjuvants
in vivo as a mechanism of adjuvanticity has been proposed. In this respect, subcutaneous administration of aluminium
adjuvants induced increased expression of both cell surface and intracellular HSP70 by splenic dendritic cells, and the
adjuvant induced immune response was reduced if the expression of HSP70 was inhibited. HSP70 is a hallmark DAMP
molecule and these results associate DAMP induction, cellular stress, and aluminium adjuvants [44]. Furthermore, upon
oral intake of Al ions, the resulting prolonged exposure to Al ions affects biochemical processes in the cell causing
cumulative sub lethal effects that activate different chaperones in the rat kidney and liver. A clear induction of HSP72
was detected in liver and HSP25 in the kidney whereas GRP75 was detected in both liver and kidney [97].

At the administration site of a vaccine, an initial high concentration of various aluminium species can be anticipated,
causing necrosis of resident and initially infiltrating phagocytosing cells. Upon diffusion and dilution by interstitial
fluid, the concentration of aluminium species will be reduced and the cells will be exposed to sub-toxic concentrations.
At this point, phagocytosing cells will accumulate the adjuvant in phagosomes and upon release or escape, micro- and
nanometre sized aggregates as well  as a constant concentration of Al3+  ions will  be maintained in the cytoplasm as
previously described. Low amounts of intra cellular nanoparticles have been shown to induce a strong upregulation of
genes  encoding  stress  response  proteins,  such  as  heat  shock  proteins  and  other  chaperones  [68].  However,  pro-
inflammatory  signalling  by  DAMP  molecules  can  also  be  mediated  by  secretion  of  existing  intracellular  DAMP
molecules as shown by the inflammatory response triggered by HMGB1 [26, 98], and the DAMP signalling is thus not
initiated by gene regulation. Consequently, approaches based on proteomics are needed to understand cellular stress
responses and DAMP induction underlying the immune stimulating properties of aluminium adjuvants [99].

Cells must survive a variety of stressful conditions, and interference by aluminium ions, and other metal ions, can be
expected to involve numerous biochemical events and mechanisms in the cell. Al3+ ions have been shown to bind to
multifunctional proteins, e.g. calmodulin and S100 proteins [100], and it should be noted that upon secretion, proteins
belonging to the S100 family show pro-inflammatory features and act as DAMPs [101, 102].

During cellular stress, there is an insistent and peremptory demand on protein synthesis and controlled folding, and
several DAMP molecules are involved in these processes. HSPs are divided into seven classes, and exercise chaperone
function by stabilizing new proteins to ensure correct folding, and aiding in the refolding of damaged proteins [103].
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Calreticulin is  another protein located in the endoplasmatic reticulum with chaperon properties and both HSPs and
calreticulin  are  DAMPs  with  pro-inflammatory  abilities  [58,  104].  These  molecules  may  very  well  be  targets  of
aluminium ions resulting in changed conformation, modified function, and cellular re-localization. Hence, as suggested
by  these  results,  cytoplasmic  nanometre  aggregates  of  aluminium  adjuvants  in  general,  and  aluminium  ions  in
particularly,  impact  several  biochemical  processes,  provoking  cellular  stress  and  expression  of  DAMP  molecules
without causing cell death.

2.4. Protein Synthesis and Folding

The  protein  content  of  a  cell  is  regulated  by  gene  expression,  synthesis,  re-folding,  and  degradation,  and
nanoparticles  as  well  as  aluminium  ions  have  been  shown  to  affect  the  conformation  of  proteins  [100,  105,  106].
Conformational  changes  will  increase  the  demand  for  cellular  protein  synthesis  and  re-folding  operations,  and
consequently,  upregulation  of  the  syntheses  of  proteins  and  chaperons  will  result.

Aluminium  adjuvants  in  the  cytoplasm  will  form  a  solid  depository  of  sparingly  soluble  aluminium  salts,
maintaining  a  constant  concentration  of  Al3+  ions  over  a  long  period.  Protocols  designed  to  study  the  effects  of  a
constant  low  concentration  of  aluminium ions  in  the  cytoplasm of  mammalian  cells  are  challenging.  The  required
experimental set up is less challenging when working with plant cells and several reports have shown that aluminium
ions affect the cellular content of proteins related to stress/defence, signal transduction, transport, and folding [107,
108]. Chaperones are upregulated and hence, proteins of the HSP family, e.g. HSP70 and HSP90, are utilized by plant
cells to handle aluminium ion induced stress [109 - 111]. The increased value of chaperone systems in plants to manage
intracellular  aluminium  ions  is  probably  mirrored  by  mammalian  cells  and  an  interesting  aspect  is  that  several
components  of  the  chaperone  systems  also  function  as  DAMP  molecules  in  a  mammalian  context.

2.5. Nuclear Structure and Function

Particulate aluminium adjuvants have not been demonstrated experimentally in the nucleus of adjuvant exposed
cells [10, 53 - 56] and nuclear DNA damage has been observed in mammalians only at aluminium ion concentrations
several magnitudes higher than those expected from slow dissolution of a solid depository of aluminium adjuvants in
the cytoplasm [112, 113]. Increased gene expression of several genes has been monitored upon exposure to aluminium
ions. In rat brain cells expression of genes related to mitochondrial respiration, including gene products also encoded by
mitochondrial DNA [114] increased, and similar results on mitochondrial genes have been reported in plant cells [88].

Cellular uptake of nanoparticles also results in increased gene expression and the genes expressed are dependent on
the surface charge of the particles and the amount nanoparticles accumulated intracellularly [68]. An interesting aspect
is that microRNAs (miRNA) have been shown to be involved in the gene regulation of plant cells exposed to Al2O3

nanoparticles [115] and to our knowledge, there are no reports regarding miRNA based gene regulation upon cellular
exposure to aluminium adjuvants.

CONCLUSION

Aluminium adjuvants have been used in vaccines during decades and yet no consensus has been reached regarding
the mechanism of immune stimulation by aluminium salts. Several mechanisms have been proposed but none of these
cover all the aspects of the immune response induced by aluminium adjuvants.

This review has focused on the possible biological impacts on a cell of an intra cellular depository of sparingly
soluble aluminium salts, maintaining a constant concentration of Al3+ ions in the cytoplasm. A general cellular stress
response resulting in the release of DAMP molecules can be expected due to the intracellular presence of particles and
aluminium ions. The release of DAMP molecules will initially be mediated by necrotic cells that have succumbed to too
high amounts intra cellular aluminium adjuvants,  and later by livings cells that  are able to handle the intra cellular
amounts of adjuvants. Upon administration of vaccine myeloid cells, e.g. monocytes, macrophages, and dendritic cells
accumulate aluminium adjuvants and since those cells are all potential APCs, they will become efficient inducers of an
adjuvant based immune response. Aluminium adjuvants will upon phagocytosis deliver an antigen and at the same time
convert the cells into DAMP expressing cells. On this basis, we would like to suggest the maintenance of a constant
concentration of Al3+  ions in the cytoplasm as a general underlying feature of the immune stimulation properties of
aluminium adjuvants.  The presence of  a  constant  intracellular  concentration of  aluminium ions will  affect  multiple
biochemical processes in the cell, efficiently inducing DAMP molecules in viable cells that otherwise manage to handle
the presence of aluminium ions (Fig. 1). Other metal ions may also have the same intracellular cellular effect as Al3+
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ions  and  thus  mediate  the  induction  of  an  immune  response,  and  correlations  between  the  immune  stimulating
properties and the physicochemical properties of inorganic crystalline materials containing metal ions have been shown
[71].  However,  in  this  report  by  Williams  et.al,  no  information  was  given  regarding  the  elimination,  or  lack  of
elimination,  of  the  crystallites  once  phagocytosed,  and no information was  given regarding the  expected metal  ion
concentration in the cytoplasm of a cell.

According to regulations, the maximal amount of aluminium adjuvant in the administered dose of a vaccine is 1.25
mg Al  per  dose  [116].  In  general,  a  vaccine  contains  0.5  –  1  mg  aluminium adjuvant  per  dose  and  the  amount  of
aluminium adjuvant is designed to provide an excessive load of antigen. An inflammation is the inducer of an immune
response  and  upon  an  adaptive  immune  activation,  the  inflammation  is  supposed  to  subside.  However,  if  the
inflammation persists, it may turn into a chronic inflammation with all the negative implications [117]. Side effects
such as ASIA [63, 64] caused by aluminium adjuvants have raised concerns on the use of aluminium salts as adjuvants
in vaccine formulations and a chronic inflammation induced by a constant intracellular concentration of Al3+ ions could
be the core of the autoimmune related side effect observed. By lowering the amounts of aluminium adjuvants in the
vaccine formulation, an efficient immune response may still be achieved, however, the amounts of aluminium adjuvants
persisting intracellularly will be reduced and thus mitigate the induction of a chronic inflammation and the occurrence
of adverse reactions.
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