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Abstract:

Cereals are an important source of food for millions of people across low-middle-income countries. Cereals are considered a staple food for poor
people. The majority of the people are depending upon agricultural occupation. Agriculture provides a primary source of income for many farmers
in low-middle-income countries. The pre- and post-harvest loss of crop yield affects farmers and is a major problem in achieving food security.
Biotic and abiotic factors cause pre- and post-harvest loss of crop yield worldwide. It significantly affects the economic status of farmers as well as
low-middle-income countries. Many advanced technologies are available for resolving the pre- and post-harvest loss of crop yield. The past few
decades  have  seen  remarkable  progress  in  crop  improvement.  Especially  high-throughput  genome  sequencing  approaches  contributed  to
advancement  in  the  crop improvement.  Genome-editing has  also  been considered a  key tool  for  crop improvement.  The clustered,  regularly
interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has become a potent genome editing system for
modifying key traits in cereal crops. CRISPR/Cas9 system offers new opportunities for addressing pre-and post-harvest constraints affecting cereal
grain production and storage. In this review, we discuss the application of the CRISPR/Cas9 genome editing system to reduce pre-and post-harvest
yield loss in cereal crops. It may promote the economic status of farmers and reduce food demand in the coming decades.

Keywords: Cereals, Crop improvement, CRISPR/Cas9, Food security, Pre-and post-harvest, Yield loss.

Article History Received: January 13, 2022 Revised: February 18, 2022 Accepted: March 25, 2022

1. INTRODUCTION

Cereals  are  the  edible  grains  and  belong  to  the  grass
family,  Poaceae  (Gramineae)  [1].  It  includes  rice,  maize,
wheat, rye, sorghum, barley, oats, triticale, millets, etc. Cereals
are the most important food and nutritional crops in the world
[2]. Cereal crops can be consumed in different ways, which are
used  to  make  many  healthy  dishes  for  humans  [3,  4].  Major
crops such as rice, maize, and wheat provide more than 30% of
the food calories to 4.5 billion people in developing countries
[5]. Other cereals and non-cereal crops are also important for
human  health  [6  -  9].  They  have  a  significant  role  in  food
security.  Global  food  and  nutritional  security  depend  upon
sustainable  cereal  crop  production.  The  agricultural  sector
provides a primary source of income for farmers in developing
countries.  It  depends  upon  the  production  and  marketing  of
crops. The pre- and post-harvest loss of crop yield is a major
issue in the current scenario [10]. This makes debt a liability
for farmers and also it leads to food demand in the future. Both
biotic  and  abiotic  stresses  influence  the  pre-and  post-harvest
loss of crop yield. For example, drought stress may occur at the
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panicle emergence or grain filling or grain maturation time of
the crop plants, which severely affects the loss of yield. Many
researchers have reported that the incidence of drought at the
pre-harvesting stage has significantly reduced the grain yield
[11 - 13]. The unexpected rainfall also causes the pre-harvest
sprouting of seeds in the mother plants. It is one of the serious
issues for pre-harvest loss of yield. Pre-harvest sprouting not
only makes a serious economic issue for farmers but also leads
to reducing crop yield and quality [14].  The insect  and pests
also significantly affect the pre-harvest loss of crop yield [15].
After  post-harvest,  correct  storage  facilities  of  the  grain  are
important  to  prevent  yield  loss  due  to  pest  attack,  mould
spoilage, grain sprouting, etc [16]. It is very difficult to store
cereal crops on a large scale due to a lack of storage facilities.
Reducing  pre-  and  post-harvest  yield  loss  could  be  a
sustainable solution to reduce the food demand [17]. Various
approaches to improving the crop traits and storage facilities,
adopting better  agronomic practices,  etc.  may help to reduce
the  pre-  and  post-harvest  loss  of  yield.  These  are  the  most
important approaches to increasing agricultural productivity.

In past, chemical-based insecticides, pesticides, fungicides,
and other chemicals were used for increasing the shelf life and
decreasing the yield loss of the crops [17 - 19]. It may lead to
many health issues in human beings due to chemical toxicity
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[20  -  22].  The  consumption  of  these  crops  is  not  good  for
human  health.  For  example,  chemical  fumigants  such  as
ethylene  dibromide,  methyl  bromide,  and  ethylene  oxide  are
very  risky  to  human health  and  the  environment  [22].  These
chemicals  are  widely  used  to  control  insect  infestations  in
crops. Developing an improved crop variety with an increased
shelf life of the yield is an important approach for reducing the
pre- and post-harvest loss of yield. It is safe for human health
and  avoids  environmental  risks.  Many  advanced  genomic
approaches are available now for resolving this issue. Genome
sequencing  technology  helps  to  understand  the  genome
organization of crops [23 - 26]. It helps to improve crop traits
through  molecular  breeding  and  genome-editing  approaches
[27,  28].  Clustered,  regularly  interspaced,  short  palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a key
genome  editing  system and  is  widely  used  for  altering  plant
traits [29 - 32]. CRISPR/Cas9 system is applied in many crop
plants and improves their traits under various biotic and abiotic
stresses [33 - 38]. Researchers have adapted the CRISPR/Cas9
system as  an  efficient  genome-editing  technique  in  targeting
the gene of interest for crop plants. It may also help to improve
crop traits and reduce the pre- and post-harvest loss of yield. In
this  review,  we  discuss  the  application  of  the  CRISPR/Cas9
genome  editing  system  to  reduce  pre-and  post-harvest  yield
loss  in  cereal  crops.  This  review  will  help  researchers  to
understand  the  scope  and  application  of  the  CRISPR/Cas9
genome editing system in crop improvement, which may help
reduce food demand in the coming decades.

2. OVERVIEW OF POST- AND PRE-HARVEST YIELD
LOSS IN CEREAL CROP

The  economy  of  the  developing  country  is  mainly
dependent  on  agriculture.  Agriculture  is  the  backbone  of
developing  countries,  and  also  it  is  a  leading  occupation  for
people. Cereals are major food crops for developing countries
and  are  providing  food  security.  Global  cereal  production  is
around 2788 million tons per year [39]. Cereal grain production
is  constrained  by  both  biotic  and  abiotic  stresses  [40  -  42].
During the pre- and post-harvest loss of crop yield due to biotic
and abiotic stresses, the economic value of the crops is reduced
or  makes  them  unsuitable  for  human  consumption.  It  may
significantly  affect  the  overall  cereal  production  worldwide.
For  example,  more  than  70%  of  the  African  (sub-Saharan
region) population is directly involved in agriculture [43]. The
post-harvest loss of crop yield is estimated to be between 20
and 40% in the African region [44]. The post-harvest losses are
valued at around the US $1.6 billion per year. Such economic
losses  are  a  combination  of  those  which  occur  on  the  field
during  harvesting  time,  in  storage,  during  post-harvest
processing,  and  during  other  sales  and  marketing  activities.
Pre-harvest  sprouting  is  a  major  issue  in  decreasing  cereal
production worldwide [45]. It also severely affects the quality
of cereal crops such as rice, maize, wheat, barley, oats, rye, etc
[46 - 49]. Pre-harvest sprouting causes an annual economic loss
of  one  billion  dollars  on  a  global  scale  [50].  Crop yield  loss
from insects  and pests’  infestation before harvest  and during
storage time are serious problems in developing countries [17,
51].  It  is  estimated  that  30-40%  of  stored  grain  is  damaged
annually  by  insects  and  pests  [52].  Other  various  biotic  and
abiotic  factors  are  also  severely  affecting  the  pre  and  post-

harvest loss of crop yield [53 - 57]. It leads to a decrease in the
economy  of  a  developing  country.  Reducing  pre-  and  post-
harvest loss of crop yield is a major research area in the current
scenario. Agriculture scientists need to adopt new techniques to
reduce pre-and post-harvest loss. It may improve the economic
status of farmers as well as developing countries.

3.  FACTORS  AFFECTING  THE  PRE-  AND  POST-
HARVEST YIELD LOSS IN CEREAL CROP

Crop production and productivity are influenced by various
agro-ecological  topography.  Proper  agricultural  practices  are
critical for reducing yield loss. The reduction of crop yield is
influenced by many factors. These factors are categorized into
three such as 1) technological (agricultural  practices,  storage
facilities,  transportation,  and  marketing,  etc),  2)  biotic/  bio-
logical  (insect,  pest,  disease,  etc.),  3)  abiotic/  environmental
(drought, moisture, soil fertility, etc.). Biotic and abiotic factors
are  a  major  problem  in  the  pre-and  post-harvest  loss  of
agricultural  products  (Fig.  1).  Significant  yield  losses  from
both  biotic  and  abiotic  stresses  have  been  reported  by  many
researchers  [58  -  62].  For  example,  abiotic  stresses  such  as
temperature,  drought,  and low soil  fertility,  cause up to 82%
annual  loss  of  crops  yield  worldwide  [63].  A  global  survey
indicated that insects and pests cause yield losses of up to 30%
in crops [64]. Haque et al. [31] reported that pre-harvest yield
losses due to diseases can be up to 15% in major food crops.
The pathogenic micro-organism causes more than 42% yield
losses and reduces 15% of global food production [65]. There
is  a  huge  impact  of  individual  biotic  and  abiotic  constraints
reducing the  crop yield  and quality,  which may lead  to  food
demand in the coming decades. The main reasons for the pre-
and  post-harvest  loss  are  1)  delay  of  grain  maturation,  2)
unexpected rainfall, 3) grain shedding, 4) insect and pest attack
during  grain  development,  and  5)  storage  pest  damage,  etc.
Effective  agriculture  practices  are  essential  for  reducing  the
loss of yield at the time of pre-and post-harvest stages.

In abiotic stress, moisture, temperature, and drought are the
main  factors  affecting  crop  production,  which  is  highly
influenced by the pre- and post-harvest loss of grain yield. Pre-
harvest  sprouting  has  been  recognized  as  one  of  the  main
factors that reduce the production and quality of crops [66]. It
is due to the incidence of moisture contents before harvest. Pre-
harvest  sprouting  issues  have  been  reported  in  rice,  maize,
wheat, barley, etc [67 - 73]. The accumulation of high moisture
content in the grains also leads to fungal infections [53, 74, 75].
This also reduces the quality of the crop and makes it unfit for
human  consumption.  Optimum  temperature  is  necessary  for
harvesting and storage. Proper temperature is very effective for
maintaining crop quality. The drought stress mainly decreases
the harvest index and delays the seed maturation of the crops
[76].  The  insect  and  pests  are  the  main  factors  for  biotic
stresses, which significantly affect the pre-and post-harvest loss
of  crop  yield.  The  insect  and  pest  infestations  reduced  crop
yield in rice maize, wheat, barley, oats, etc. during the pre-and
post-harvest  periods  [77  -  82].  The  post-harvest  crop  loss
occurs from harvest to human consumption due to both biotic
and  abiotic  factors.  Scientists  need  to  resolve  this  problem
permanently through advanced crop breeding. It  may help to
develop a new tolerant variety to both biotic and abiotic factors
and reduce yield loss.
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Fig. (1). Major biotic and abiotic factors involved in the pre-and post-harvest yield loss in cereal crops. Both biotic (fungus, bacteria, stored pest,
insect,  and  pest)  and  abiotic  (cold,  water,  drought,  and  temperature)  stress  factors  significantly  reduce  the  crop  yield  and  quality  and  make  it
unsuitable for human consumption.

4.  OVERVIEW  OF  CRISPR/CAS9  FOR  CROP
IMPROVEMENT

Gene  editing  uses  engineered  site-specific  nucleases  to
remove, insert, or mutate a DNA sequence [83]. It is a recent
tool used for crop breeding. Conventional breeding by genetic
recombination  or  random  mutagenesis  is  a  time-consuming
process. The advent of site-specific nucleases has highlighted
the  importance  of  site-directed  mutagenesis  over  random
mutagenesis  [84].  It  is  very  effective  for  improving  the
desirable  traits  of  the  crops.  Advanced  genome-editing
techniques  like  zinc  finger  nuclease  (ZFNs),  transcriptional
activator-like effect or nuclease (TALENs), and CRISPR/Cas9
offer platforms for transgene-free genome-editing and precisely
target  any  gene  of  interest  [85].  Among  the  genome  editing
techniques, CRISPR/Cas9 requires only a small piece of RNA
(gRNA) to target any gene of interest [86]. It is a very efficient
genome-editing  system  that  improves  crop  traits  under  both
biotic and abiotic stresses. The CRISPR/Cas9 system has been
applied  in  many  crop  plants  [87,  88].  The  application  of  the
CRISPR/Cas9  system  in  cereal  crops  was  highlighted  by
Hillary  and  Ceasar  [32].  The  CRISPR/Cas9  genome-editing
system paved the way for a nucleotide excision (remove, insert,
or  mutate)  mechanism  for  crop  improvement.  It  has  high
efficiency  and  accuracy  which  is  highly  helpful  for  crop
improvement [89]. Genome-editing system like CRISPR/Cas9
has  been  considered  to  be  a  potential  tool  for  crop
improvement.  In  the  last  few  years,  developments  in
CRISPR/Cas9 system are  spectacular  and widely applied for

target  mutagenesis  in  crops,  including  gene  knock-out  and
knock-in, modification, and suppression of target genes [88].
Despite  the  significant  advances  in  CRISPR/Cas9  system,
numerous limitations and concerns still exist, such as off-target
mutations, indel mutations, and the absence of PAM sequence
in the chosen gene loci [90]. These demerits bring concerns to
the  regulatory  bodies,  consumers,  and  the  farmers  to  utilize
CRISPR/Cas9  edited  crops  [91].  However,  a  variety  of
CRISPR-based  systems  (variants  such  as  Cas12,  Cas13,  and
Cas14, base editing, prime editing) are now in the row, which
would serve as alternatives to Cas9 [92 - 96]. These advance-
ments in CRISPR-based systems would definitely reduce the
pre-and post-harvest yield loss in cereal crops and strengthen
food security in the future.

5. APPLICATION OF CRISPR/CAS9 TO REDUCE PRE-
AND POST-HARVEST YIELD LOSS

Cereals are the primary source of calories and nutrients and
serve  as  a  staple  food  for  millions  of  people  in  developing
countries. The pre-and post-harvest loss of crops is a serious
issue for farmers to meet food production. The CRISPR/Cas9
system  promises  the  rapid  development  of  new  varieties  of
crops with enhanced traits. The CRISPR-Cas9 genome-editing
system has been successfully used to develop biotic and abiotic
stress-resistant plants (Fig. 2).The various approaches for the
reduction  in  pre-and  post-harvesting  loss  of  yield  using  the
CRISPR/Cas9 system are discussed below.
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Fig. (2). Crop improvement through CRISPR/Cas9 genome-editing. The CRISPR/Cas9 genome-editing system has allowed the development of biotic
and abiotic stress-resistant crop varieties either by knock-in of resistant genes or knock-out of susceptible genes.

5.1. Reduction of Pre-Harvest Yield Loss by CRISPR/Cas9
System

Pre-harvest sprouting is a major problem in cereal crops.
The moisture and temperature raise grain susceptibility to pre-
harvest  sprouting.  The  phytohormones  like  abscisic  acid
(ABA)  and  gibberellic  acid  (GA)  are  involved  in  seed
germination  and  dormancy  in  many  plants  [97,  98].  These
phytohormones have multi-functional properties. For example,
the  ABA is  one  of  the  multi-functional  phytohormones,  it  is
involved in many stress-induced responses. It has been shown
that ABA plays a crucial role in regulating plant adaptation to
various  biotic  and  abiotic  stresses,  as  ABA  can  trigger
extensive changes in the transcriptome to help plants respond
to environmental stresses [99 - 102]. The biosynthesis of these
phytohormones is regulated by many genes. The knock-out or
knock-in  of  target  genes  related  to  the  biosynthesis  of
phytohormones will help reduce pre-harvest sprouting in cereal
crops  (Table  1).  For  example,  OsABA2  gene  codes  for
zeaxanthin  epoxidase  in  rice  which  is  involved  in  ABA
biosynthesis [103]. Knock-out of the OsABA2 gene using the
CRISPR/Cas9  system  showed  altered  seed  dormancy  and
germination in rice [104]. It may help to reduce yield losses in
rice due to pre-harvest sprouting. The MOTHER OF FT AND
TFL  (MFT)  gene  is  also  involved  in  the  regulation  of  ABA
signaling-mediated seed germination. The OsMFT2 knock-out

lines  exhibited  pre-harvest  sprouting  in  rice,  whereas  pre-
harvest  sprouting  did  not  exhibit  in  wild-type  and  OsMFT2
overexpression lines [105]. These results have given the insight
into reducing the loss of pre-harvest sprouting in rice through
the  knock-in  of  OsMF2  genes  through  the  CRISPR/Cas9
system in the future. The CRISPR/Cas9 system could be used
to introduce desirable traits and reduce yield loss in crops. The
qSH1  is an important gene associated with seed shattering in
rice  [106].  The  knock-out  of  the  qSH1  gene  using  the
CRISPR/Cas9 system showed reduced grain shattering in rice
[106]. Konishi et al. [107] reported that the loss of function of
qSH1  gene  in  rice  significantly  improved  strong  seed
shattering, which helps to improve the crops production. Many
genes  such  as  shattering  abortion1  (SHAT1),  shattering4
(SH4),  growth-regulating  factor  4  (GRF4),  etc.  have  been
identified  in  rice  and  they  are  responsible  for  rice  grain
shattering  [108  -  110].  The  CRISPR/Cas9  genome-editing
system has allowed to improve the crop yield either by knock-
in  of  resistant  genes  or  knock-out  of  susceptible  genes.  The
CRISPR-Cas9 system was used to mutate the salt and drought
tolerance  (DST)  gene  in  rice  [111].  Santosh  et  al.  [111]
revealed  that  the  dst  mutant  lines  improved salt  and  drought
tolerance  as  well  as  grain  yield  in  rice.  Application  of
CRISPR/Cas system targeting these genes may help to improve
the pre-harvest loss in cereals.
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Table 1. Application of CRISPR/Cas9 system to reduce the pre-and post-harvest yield loss in major cereal crops. Details on
the name of the cereal crop, type of study, target gene, gene function, and observation are given.

Name of
the Crop

Type of Study Target Gene Functions/Description of Gene Observation Reference

Rice Knock-out qSH1 Susceptible to seed shattering Reduced the seed shattering [106]
Rice Knock-out MFT2 Susceptible to sprouting Reduced the post-harvest sprouting [105]
Rice Knock-out VP1and Sdr4 Tolerance to sprouting Increased the post-harvest sprouting [98]

Rice Knock-out ABA2 Involved in ABA biosynthesis pathway Enhanced the disease resistance and altered
seed dormancy [104]

Rice Mutation Gn1a and DEP1 Gene related to yield Increased the grain yield [132]
Rice Knock-out PHS9 Susceptible to sprouting Increased the pre-harvest sprouting [133]
Rice Mutation SD1 Tolerance to lodging Increased the resistance to lodging [134]

Rice Mutation DST Tolerance to abiotic stress Increased the tolerance to salt and drought
stress [111]

Rice Mutation SAPK2 Tolerance to drought Increased the tolerance to drought stress [135]
Rice Knock-out Ann3 Tolerance to cold Increased the tolerance to cold stress [136]

Rice Knock-out SWEET13 Susceptible to blight disease and involved in
sugar synthesis

Increased the resistance to bacterial blight
disease [113]

Rice Mutation ERF922 Tolerance to pathogenicity Increased the resistance to pathogenicity [118]
Rice Mutation SEC3A Tolerance to blight disease Increased the resistance to blight disease [137]

Rice Knock-down CYP71A1 Involved in biosynthesis of serotonin Increased the resistance to brown plant
hopper [122]

Wheat Knock-out MLO Susceptible to powdery mildew Increased the resistance to powdery
mildew [114]

Wheat Knock-out EDR1 Susceptible to powdery mildew Increased the resistance to powdery
mildew [117]

The CRISPR/Cas9 system was also successfully applied in
biotic stress management in cereal crops (Table 1). Pre-harvest
yield  losses  due to  diseases  can be up to  15% in major  food
crops  [31].  Bacterial  blight  is  a  major  disease  (caused  by
Xanthomonas  oryzae  pv.  Oryzae)  that  constrains  rice
production in Asia [112].  The knock-out of the OsSWEET13
gene  using  the  CRISPR/Cas9  system  showed  improved
resistance to bacterial blight disease in rice [113]. The knock-
out  of  OsSWEET13  reduces  the  sugar  availability  within  the
xylem vessels and prevents bacterial colonization in rice. This
may help to reduce the crop yield losses due to bacterial blight
disease.  The  fungus  is  responsible  for  multiple  diseases
including mildew,  rot,  rust,  and smut,  which can cause  huge
yield loss in crops. The mildew-resistance locus (MLO) is one
of the susceptible genes to powdery mildew in wheat. Knock-
out  of  mildew-resistance  locus  (TaMLO)  gene  using  the
CRISPR/Cas9  system showed  resistance  to  powdery  mildew
disease  in  wheat  [114].  As  per  a  very  recent  breakthrough
study,  TaMLO-R32  mutant  lines  created  by  a  multiplex
CRISPR system maintain the normal growth and yields as well
as confer resistance to powdery mildew disease in wheat [115].
Editing of MLO gene in wheat may provide the opportunity to
breed  varieties  with  improved  grain  yield  [114,  116].
CRISPR/Cas9 system-mediated knock-out of enhanced disease
resistance1 (EDR1) resulted in enhanced resistance in wheat to
powdery mildew caused by Blumeria graminis [117]. In rice,
the knock-out of the ethylene-responsive factors 922 (ERF922)
gene by the CRISPR/Cas9 system showed improved resistance
to  pathogenicity  [118].  The  CRISPR/Cas9  system  is  very
useful  for  the  functional  characterization  of  target  genes.  So
far, many biotic and abiotic stress-responsive genes have been

identified  in  crops.  Most  of  the  genes  are  very  helpful  for
reducing the pre-harvest loss of grain yield. The knock-out or
knock-in of stress-responsive genes through the CRISPR/Cas9
system  could  help  develop  improved  crop  variety.  It  may
improve the  economic  status  of  farmers  and reduce  the  food
demand in the coming decades.

5.2. Reduction of Post-Harvest Yield Loss by CRISPR/Cas9
System

Insects  and pests  mainly affect  post-harvest  yield  loss  in
cereals. Improving the quality of the grains could help develop
resistance against the damage caused by insects and pests. The
CRISPR/Cas9  genome-editing  system  has  allowed  the
development  of  new  insect-pest  resistant  crop  varieties  by
either  knock-in  insect-pest  resistant  genes  or  knock-out  of
susceptible  genes  (Fig.  2).  The  chemical  and  physical
properties  of  grains  are  responsible  for  defense  mechanisms
against  insect-pest  damage  [119,  120].  The  chemical
composition of grain cell walls, the color of the testa,, glume
and  grain  phenol  content,  etc.  contribute  to  grain  insect-pest
attack  as  well  as  mold  resistance  [121].  Alteration  of  grain
components  could  be  effective  for  reducing  the  post-harvest
loss of grain yield. These strategies maybe effectively utilized
in  the  CRISPR/Cas9  genome  editing  for  insect-pest  control.
For example, the inactivated CYP71A1 gene prevents serotonin
biosynthesis and increases the salicylic acid content in plants,
which helps to improve insect-resistant and prevent yield losses
[122].  CYP71A1  knock-out  mutants  prevented  serotonin
synthesis  and  conferred  disease-resistance  in  rice  [123].
CRISPR/Cas9-mediated knock-down of CYP71A1 gene in rice
showed resistance to  brown planthopper  [122].  So far,  many
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insect-pest resistant genes have been identified in crop plants
[124, 125]. Genome-editing in insect-pest with CRISPR/Cas9
system has been recognized as a potential tool for insect-pest
control [126]. The CRISPR/Cas9 system-mediated knock-out
of various genes of insect-pest such as Spodoptera litura [127,
128], Spodoptera littoralis [129], Helicoverpa armigera [130],
and Plutella xylostella [131] helped to protect the plants from
insect  damage.  CRISPR/Cas9  system  has  great  prospects  in
controlling agricultural insects and pests (Table 1).

CONCLUSION AND FUTURE PROSPECTS

The  economy  of  the  developing  country  is  mainly
dependent  on  agriculture  and  the  large-scale  production  of
crops.  Pre-and  post-harvest  loss  is  a  major  issue  in  the
agriculture  sector.  Both  biotic  and  abiotic  factors  influence
crop  production.  The  agricultural  management  and  adequate
storage facilities cannot reduce the pre-and post-harvest yield
loss. It is not effective in the long term due to current societal
and climatic changes. Developing crop varieties with increased
shelf  life  is  an  important  approach  in  reducing  the  pre-  and
post-harvest  loss  of  yield.  Many  advanced  approaches  are
available for crop improvement. Genome-editing is one of the
most important solutions for crop improvement. It helps to alter
the desirable traits of the crops. It is a long-term solution for
reducing  pre-and  post-harvest  yield  loss.  In  the  current
scenario, transgenic-free crops are safe for human health. The
CRISPR/Cas9 system offers a precise transgene-free genome-
editing approach. This approach offers new opportunities for
addressing pre-and post-harvest loss of crop yield. It is widely
used for improving crop traits. The CRISPR/Cas9 system is an
asset for crop improvement. It can help to reduce yield loss and
strengthen food security in the future.
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