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Abstract: The stability of a mathematical model for viral infection with Beddington-DeAngelis functional response is 

considered in this paper. If the basic reproduction number
0 1R  , by the Routh-Hurwitz criterion and Lyapunov function, 

the uninfected equilibrium
0E  is globally asymptotically stable. Then, the global stability of the infected equilibrium 

1E  

is obtained by the method of Lyapunov function. 

Keywords: Beddington-DeAngelis, equilibrium, Global dynamics, HIV model. 

1. INTRODUCTION 

 Human Immunodeficiency Virus and Acquired Immune 
Deficiency Syndrome (AIDS) have received much attention 
from the first case of AIDS was diagnosed on December 1st 
in 1981. It is proven to be valuable in understanding the 
population dynamics of viral load in vivo with mathematical 
models. In the last decade, many mathematical models have 
been developed to describe the infection with Human 
Immunodeficiency virus (HIV) (see[1-9]). Nowak et al. [1, 
3] proposed the following model: 
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 (1.1)  

where ( ), ( )x t y t and ( )v t represent the numbers(densities) 

of healthy 4CD  T-cells, infected 4CD 
T-cells and viral 

particles at time t  respectively. The model assumed that 

healthy 4CD  T-cells are infected at a rate xv , infected 

4CD  T-cells are lost at a rate ay , and virus are produced by 

infected 4CD  T-cells at a rate ky  and removed at a rate rv . 

In model (1.1), it is also assumed that healthy 4CD 
T-cells 

are input at a constant rate  , and die at a rate dx .  

 Although the infection rate is bilinear in most HIV-I 
models with the virus v  and healthy 4CD 

T- cells x , actual 
incidence rates are probably not linear over the entire range 
of v  and x . Thus, it is reasonable for our paper to  
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assume that the infection rate of the form
1

xv

mx nv
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 
, where 

, 0m n  are constants. The function response 
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was introduced by Beddington [10] and DeAngelis et al. 

[11]. 

 In this paper, we consider a HIV-I model with Bedding-
ton-DeAngelis function response as follows: 
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  (1.2) 

 The biological meanings of these parameters are the 
similar to those appearing parameters in model (1.1). 

2. EQUILIBRIA AND GLOBAL STABILITY ANALYSIS 

 Let  
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 Then 0R  is the basic reproductive number of model 

(1.2), which describes the average number of newly infected 

T-cells generated from one infected T-cells. We can obtain 

that 
0 0( ,0,0)E x  is an uninfected equilibrium 

where 0x
d

 , and 1 1 1 1( , , )E x y z  is a infected 

equilibrium of model (1.2) if and only if 0 1R   where 
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 Now, we begin to study the stabilities of these two 
equilibria. 

 Firstly, we begin to study the stability of the uninfected 
equilibrium

0 0( ,0,0)E x . Evaluating the Jacobian matrix of 
model (1.2) at 0E gives 
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 By simple computations, the characteristic equation is  
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if 0 1R  . According to the Routh-Hurwitz criterion, it is 

obtained that uninfected equilibrium 0E  is locally 

asymptotically stable when
0 1R  . 

 When 
0 1R   it is easy to obtain that 

3 0A  , and 

3(0) 0, ( )A       . That is to say the charac-

terristic equation has positive solution. So 
0E  is unstable 

when
0 1R  . 

 Moreover, we construct a Lyapunov function for 
studying the global stability.  Let  
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 Along the trajectories of model (1.2),  
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and only when 0 , 0, 0x x y z   , we have 
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By the LaSalle invariance principle, when 
0 1R   the 

uninfected equilibrium 0E  is globally asymptotically stable. 

 Summarizing the discussion above, we obtained the 
following conclusion. 

 Theorem 2.1 The uninfected equilibrium 
0E  is globally 

asymptotically stable when 
0 1R   and is unstable when 

0 1R  . 

 Then we begin to analysis the stability of   infected 
equilibrium

1E . Let 
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 Along the trajectories of model (1.2), we obtained 
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Since 1 1 1( , , )x y z is the equilibrium point of (1.2), we have 

 1 1 1

1 1 1

1 1 1

, ,
1

y x zb
dx ay ay

z k mx nz


    

 
 

 So 

0 0(1.2)

0

0

0

0 0

0

0 0

0

1 1
' ( ' ') ' '

1

1 1
           (1 )( )

1 1 1

              ( )

1 1
           ( ) (

1 1 1

              )
1

a
L x x x y z

mx x k

xz xz
x dx

mx x mx nz mx nz

a
ay ky bz

k

x x z
dx x d

mx x mx nz mx

xz ab xz
z

mx k

 



 

 

   


    
    

  

    
   

  


0 0 0

0 0 0 0

0 0 0 0

0 0 0

0

1

1
           (2 ) (

1 1 1 1

(1 )
              )

1
           (2 ) (

1 1 1

(1 )
              )

           

mx nz

x d x x zx xz

mx x x mx nz mx mx

abz mx nz
xz

k

x d x mx x z x zx

mx x x mx nz mx

abz mx nz

k

x d

 



 

 

    
    

 
 


   

   

 


 0

0 0

2

0 0

0

0 0

2

1 ( 1)
(2 ) (

1 1

(1 )
              )

(1 )
           (2 ) ( 1)

1 (1 )

                
(1 )

x x z mx

mx x x mx nz d m

abz mx abnz

k k

x d x x abz mx
R

mx x x mx nz k

abnz

k mx nz






  

   


 


     

  

 

 



29    The Open Biotechnology Journal, 2015, Volume 9 Zhanwei and Xia 

 Moreover 

1

1

1 1 1

1 1

1

1 1

1 1

1 1

1 1

1 1

1 1

2

1 1

1

1 1
    (1 )

1 1

( )
1 1

1 1
( )( )

1 1

( )
( )

(1 )(1 )

( ) (1 )

(1 )(1

mx nzz z mx nz
ay

z z mx nz mx nz

nz nz nz nzz
ay

mx nz z mx nz

z
ay n z z

mx nz z mx nz

z z mx z z
ay n z z

z mx nz mx nz

ay n z z mx

z mx nz mx

   
  

   

 
 

   

  
   

  
 

   

 


    1

0
)nz


 

and 

1 1 1 1 1 1

1 1 1 1 1 1

1

1 1
4

1 1

1
0

1

x mx nz xzy mx nz z y

x mx nz x z y mx nz zy

mx nz

mx nz

   
  

   

 
 

 

. 

We got for all 0, 0, 0x y z   ,  1( , , )
0

dL x y z

dt
  holds. 

Moreover, 1 0
dL

dt
  when and only when

1,x x  

1y y ,
1z z . According to LaSalle invariance principle, the 

infected equilibrium 
1E  is globally asymptotically stable. 

 Theorem 2.2 The infected equilibrium 
1E  exists and is 

globally asymptotically stable when
0 1R  . 

CONCLUSION 

 In this paper, we have investigated a HIV-I mathema-
tical model with Beddington-DeAngelis function response. 
According to the Routh-Hurwitz criterion and LaSalle inva-
riance principle, we obtained the following conclusion: 1) 
when 

0 1R   the uninfected equilibrium 
0E  is globally 

asymptotically stable; 2) when
0 1R  the infected equili-

brium 
1E  is globally asymptotically stable. 
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